

STEEL TO POLYESTER CONVERSION

TESTING GUIDELINE

If ones customer uses a pallet of steel each month, they are a good candidate for conversion to polyester strapping.

- * It is up to the user to determine whether a product is safe and fit for a particular purpose and user's method of application.
- * American Association of Railroads Rules may apply. * Strapping should never be used as a handle.

STEEL SPECIFICATIONS								
SIZE	BREAK	FEET/ COIL	SIZE	BREAK	FEET/ COIL			
3/8" x .017RD	980	4710	5/8" x .020RD	1470	2360			
3/8" x .020RD	880	3930	5/8" x .023RD	1670	2050			
1/2" x .017RD	1305	3490	3/4" x .017RD	1960	2360			
1/2" x .020RD	1180	2940	3/4" x .020RD	1760	1960			

3/4" x .023RD

3/4" x .025HT

POLYESTER SPECIFICATIONS							
PROD. NO.	SIZE	BREAK	FEET/ COIL	PROD. NO	SIZE	BREAK	FEET/ COIL
1277	1/2" X .025	775	5800	2030	5/8" X .030	1100	4600
1280	1/2" X .028	800	6500	2035	5/8" X .035	1400	4000
1822	1/2" X .028	800	6500	2036	5/8" X .036	1250	4000
5890	5/8" X .025	900	4400	2038	5/8" X .038	1400	4000
5811	5/8" X .030	1100	3600	2040	5/8" X .040	1400	4000
5814	5/8" X .035	1400	4200	3440	3/4" X .040	1900	3000

Economic Justification

1340

1630

2560

2830

1/2" x .023RD

5/8" x .017RD

First determine your cost per foot for the steel product you're currently using and its polyester replacement

2010

2800

1710

1570

Price/Coil Feet/Coil	=	Cost Per Foot	=	_	Cost Per Foot	.i	Cost Per Foot	
				Steel	ı: 	Polyester		
			•					

Application Cost Savings

Determine the footage needed to package your product, then multiply the footage times the cost per foot of the steel product and its plastic replacement. The difference between the higher priced steel and the lower priced plastic is your application cost savings.

Steel Cost Per Foot_X Application Footage _= Cost Per Application_ Polyester Cost Per Foot X Application Footage = Cost Per Application Difference = Savings Per Application with Polyester___

Yearly Cost Savings

Determine how many coils of steel are used annually and multiply this number by the standard footage of the coil to get the yearly footage required. Then multiply the yearly footage times the cost per foot for both steel and polyester. The difference is your annual savings.

Steel Annual Colls	X	Coll Footage	=	rearly Footage
Yearly Footage	X	Cost Per Foot Steel	=	Yearly Cost Steel
Yearly Footage	X	Cost Per Foot Polyester	=	Yearly Cost Polyester
		Difference = An	/Polyester =	